\(\int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [629]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 95 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {3 x}{2 a}+\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\cos (c+d x)}{a d}-\frac {\cos ^3(c+d x)}{3 a d}-\frac {3 \cot (c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d} \]

[Out]

-3/2*x/a+arctanh(cos(d*x+c))/a/d-cos(d*x+c)/a/d-1/3*cos(d*x+c)^3/a/d-3/2*cot(d*x+c)/a/d+1/2*cos(d*x+c)^2*cot(d
*x+c)/a/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2918, 2671, 294, 327, 209, 2672, 308, 212} \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\cos ^3(c+d x)}{3 a d}-\frac {\cos (c+d x)}{a d}-\frac {3 \cot (c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {3 x}{2 a} \]

[In]

Int[(Cos[c + d*x]^4*Cot[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

(-3*x)/(2*a) + ArcTanh[Cos[c + d*x]]/(a*d) - Cos[c + d*x]/(a*d) - Cos[c + d*x]^3/(3*a*d) - (3*Cot[c + d*x])/(2
*a*d) + (Cos[c + d*x]^2*Cot[c + d*x])/(2*a*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \cos ^3(c+d x) \cot (c+d x) \, dx}{a}+\frac {\int \cos ^2(c+d x) \cot ^2(c+d x) \, dx}{a} \\ & = \frac {\text {Subst}\left (\int \frac {x^4}{1-x^2} \, dx,x,\cos (c+d x)\right )}{a d}-\frac {\text {Subst}\left (\int \frac {x^4}{\left (1+x^2\right )^2} \, dx,x,\cot (c+d x)\right )}{a d} \\ & = \frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}+\frac {\text {Subst}\left (\int \left (-1-x^2+\frac {1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{a d}-\frac {3 \text {Subst}\left (\int \frac {x^2}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d} \\ & = -\frac {\cos (c+d x)}{a d}-\frac {\cos ^3(c+d x)}{3 a d}-\frac {3 \cot (c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}+\frac {\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{a d}+\frac {3 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d} \\ & = -\frac {3 x}{2 a}+\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\cos (c+d x)}{a d}-\frac {\cos ^3(c+d x)}{3 a d}-\frac {3 \cot (c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.31 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.28 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right )^2 \left (27 \cos (c+d x)+6 \left (6 c+6 d x+5 \cos (c+d x)-4 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+4 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin (c+d x)+\cos (3 (c+d x)) (-3+2 \sin (c+d x))\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{48 a d (1+\sin (c+d x))} \]

[In]

Integrate[(Cos[c + d*x]^4*Cot[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-1/48*((1 + Cot[(c + d*x)/2])^2*(27*Cos[c + d*x] + 6*(6*c + 6*d*x + 5*Cos[c + d*x] - 4*Log[Cos[(c + d*x)/2]] +
 4*Log[Sin[(c + d*x)/2]])*Sin[c + d*x] + Cos[3*(c + d*x)]*(-3 + 2*Sin[c + d*x]))*Tan[(c + d*x)/2])/(a*d*(1 + S
in[c + d*x]))

Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.02

method result size
parallelrisch \(\frac {-12 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-6 \cos \left (d x +c \right )+3 \cos \left (2 d x +2 c \right )-9\right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+6 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-18 d x -15 \cos \left (d x +c \right )-\cos \left (3 d x +3 c \right )-16}{12 d a}\) \(97\)
derivativedivides \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {8 \left (-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}+\frac {2}{3}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-6 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}\) \(121\)
default \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {8 \left (-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}+\frac {2}{3}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-6 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}\) \(121\)
risch \(-\frac {3 x}{2 a}+\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{8 d a}-\frac {5 \,{\mathrm e}^{i \left (d x +c \right )}}{8 a d}-\frac {5 \,{\mathrm e}^{-i \left (d x +c \right )}}{8 a d}-\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d a}-\frac {2 i}{a d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}-\frac {\cos \left (3 d x +3 c \right )}{12 a d}\) \(156\)
norman \(\frac {\frac {2 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {13 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {1}{2 a d}+\frac {\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}-\frac {3 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}-\frac {3 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {6 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {6 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {9 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {9 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {6 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {6 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {3 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {3 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {4 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {9 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {17 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {32 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {7 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {67 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(425\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/12*(-12*ln(tan(1/2*d*x+1/2*c))+(-6*cos(d*x+c)+3*cos(2*d*x+2*c)-9)*cot(1/2*d*x+1/2*c)+6*sec(1/2*d*x+1/2*c)*cs
c(1/2*d*x+1/2*c)-18*d*x-15*cos(d*x+c)-cos(3*d*x+3*c)-16)/d/a

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.09 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3 \, \cos \left (d x + c\right )^{3} - {\left (2 \, \cos \left (d x + c\right )^{3} + 9 \, d x + 6 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 3 \, \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 3 \, \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 9 \, \cos \left (d x + c\right )}{6 \, a d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(3*cos(d*x + c)^3 - (2*cos(d*x + c)^3 + 9*d*x + 6*cos(d*x + c))*sin(d*x + c) + 3*log(1/2*cos(d*x + c) + 1/
2)*sin(d*x + c) - 3*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 9*cos(d*x + c))/(a*d*sin(d*x + c))

Sympy [F]

\[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {\cos ^{6}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)**6*csc(c + d*x)**2/(sin(c + d*x) + 1), x)/a

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 277 vs. \(2 (87) = 174\).

Time = 0.30 (sec) , antiderivative size = 277, normalized size of antiderivative = 2.92 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {\frac {16 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {15 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {24 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {9 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {24 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {3 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 3}{\frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, a \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, a \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {a \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}} + \frac {18 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {3 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/6*((16*sin(d*x + c)/(cos(d*x + c) + 1) + 15*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 24*sin(d*x + c)^3/(cos(d*
x + c) + 1)^3 + 9*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 24*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 3*sin(d*x + c
)^6/(cos(d*x + c) + 1)^6 + 3)/(a*sin(d*x + c)/(cos(d*x + c) + 1) + 3*a*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3
*a*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + a*sin(d*x + c)^7/(cos(d*x + c) + 1)^7) + 18*arctan(sin(d*x + c)/(cos(
d*x + c) + 1))/a + 6*log(sin(d*x + c)/(cos(d*x + c) + 1))/a - 3*sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.55 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {9 \, {\left (d x + c\right )}}{a} + \frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a} - \frac {3 \, {\left (2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} - \frac {2 \, {\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 12 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 8\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3} a}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(9*(d*x + c)/a + 6*log(abs(tan(1/2*d*x + 1/2*c)))/a - 3*tan(1/2*d*x + 1/2*c)/a - 3*(2*tan(1/2*d*x + 1/2*c
) - 1)/(a*tan(1/2*d*x + 1/2*c)) - 2*(3*tan(1/2*d*x + 1/2*c)^5 - 12*tan(1/2*d*x + 1/2*c)^4 - 12*tan(1/2*d*x + 1
/2*c)^2 - 3*tan(1/2*d*x + 1/2*c) - 8)/((tan(1/2*d*x + 1/2*c)^2 + 1)^3*a))/d

Mupad [B] (verification not implemented)

Time = 9.99 (sec) , antiderivative size = 229, normalized size of antiderivative = 2.41 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3\,\mathrm {atan}\left (\frac {6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-6}+\frac {9}{9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-6}\right )}{a\,d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}-\frac {-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {16\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+1}{d\,\left (2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+6\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+6\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a\,d} \]

[In]

int(cos(c + d*x)^6/(sin(c + d*x)^2*(a + a*sin(c + d*x))),x)

[Out]

(3*atan((6*tan(c/2 + (d*x)/2))/(9*tan(c/2 + (d*x)/2) - 6) + 9/(9*tan(c/2 + (d*x)/2) - 6)))/(a*d) - log(tan(c/2
 + (d*x)/2))/(a*d) - ((16*tan(c/2 + (d*x)/2))/3 + 5*tan(c/2 + (d*x)/2)^2 + 8*tan(c/2 + (d*x)/2)^3 + 3*tan(c/2
+ (d*x)/2)^4 + 8*tan(c/2 + (d*x)/2)^5 - tan(c/2 + (d*x)/2)^6 + 1)/(d*(2*a*tan(c/2 + (d*x)/2) + 6*a*tan(c/2 + (
d*x)/2)^3 + 6*a*tan(c/2 + (d*x)/2)^5 + 2*a*tan(c/2 + (d*x)/2)^7)) + tan(c/2 + (d*x)/2)/(2*a*d)